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WIND-TUNNEL TESTS OF A SERIES OF PARACHUTES
DESIGNED FOR CONTROLLABLE GLIDING FLIGHT
By James A. Weiberg and Kenneth W. Mort

Ames Research Center
SUMMARY

It was found that the glide capability of parachutes was affected by the
canopy configuration. The maximum 1lift-drag ratio achieved was approximately
2.1 and was attained by two parachutes, a rectangular canopy and a 3-lobe
canopy. This performance was generally obtained with some loss in stability,
particularly at low lift-drag ratios corresponding to nearly vertical
descent. Limited results of an investigation of two reefed configurations
are also presented.

INTRODUCTION

The characteristics desired of a recovery parachute are high maximum
lift-to-drag ratio (L/D) with ability to control the glide angle from
vertical descent (L/D = 0) to the maximum L/D. Research reported in refer-
ence 1 showed that the glide path of a parachute could be controlled by use
of an extendable flap in one side of the canopy. The maximum glide path
angle of these parachutes was limited by distortion and collapse of the
leading edge of the canopy. Additional tests were made of parachute con-
figurations designed to maintain canopy shape to higher glide angles and the
results are presented in this report. The tests were conducted in the Ames
40- by 80-foot wind tunnel.

NOTATION
b reference span of rectangular parachutes, ft
d fricient, o8
Cp rag coefficient, 5o
Cy, 1ift coefficient, 1ift
ISTe)

Cr resultant force coefficient, /CL2 + Cp®

Do nominal diameter of uninflated parachute, ft



h gsuspension line length, ft
L lift-drag ratio
D
a free-stream dynamic pressure, psf
Do
So nominal uninflated parachute area —y 2 °r reference area, sq ft
v free-stream velocity, fps
Al internal control line extension (see figs. 2(c) and 2(f))
Ale control line extension, ft

MODEL AND APPARATUS

Parachutes

The parachutes primarily have solid canopies. Single- and multiple-
lobe canopies and clusters of single canopies were tested. Photographs of
the parachutes in the tunnel are shown in figure 1. The geometry of the
parachutes is given in figure 2. Configurations 1 to 6 (figs. 2(a) to 2(d))
are single circular canopies. The three devices investigated to prevent
canopy leading-edge collapse are shown in figure 2(e) and consist of (1) a
curved aluminum tube inserted into the leading edge of the canopy, (2) a
torus inflated to 0.8 psi with nitrogen and attached to the skirt of the
canopy, and (3) triangularly shaped struts attached to the leading edge of
the canopy at the suspension lines. Configurations 7 and 8 (fig. 2(f)) are
multiple-lobe canopies and represent a cluster of three parachutes in a
single canopy. Configurations 9, 10, and 11 (figs. 2(g) to 2(i)) are rec-
tangular canopies. The sailcloth porosity (cfm/sq ft at a differential pres-
sure of 0.5 inch of water) was 2 for configurations 1 to 8 and 0.5 for
configurations 9 to 11.

The circular and multiple-lobe canopies (configurations 1 to 8) had
controllable trailing-edge flaps. Configurations 5 and 7 also had control-
lable internal suspension lines (see figs. 2(c) and 2(f)). The rectangular
canopies (configurations 9, 10, and 11) had control lines attached as shown
in figures 2(g), (h), and (i).

Parachute configurations 1 to 8 were designed and fabricated by the
Ventura Division of Northrop Corporation. Configurations 9, 10, and 11
were designed and fabricated by Barish Associates, Inc.



Control Mechanism and Tunnel Mounting

The mechanism which operated the control lines is shown in figure 3,
and is similar to the one described in reference 1.

The parachutes were mounted in the tunnel either on one of the con-
ventional model support struts (fig. 4(a)) or on a short strut (fig. 4(b)).
On the conventional strut, the control mechanism was attached rigidly to the
strut and the parachute was "flown" in an approximately horizontal plane
near the center of the tunnel, On the short strut, the control mechanism
was mounted on a gimbal arrangement which allowed the mechanism to pivot
about a horizontal axis so that the parachute was "flown" in a vertical
plane.

Tests and Corrections

The parachutes were tested for a range of control settings and tunnel
velocities. Tests of configurations 1 to 8 began with a low stable flap
setting. The flap extension was then increased until the parachute oscil-
lated. Tests of configurations 9 to 11 began at maximum L/D, which
occurred just prior to the collapse of the leading edge. The control lines
were then retracted until the canopy oscillated. The data presented in the
figures represent the maximum range of control settings with which the
parachutes could be flown without oscillating violently.

Parachutes.5 and 7 were also tested in several reefed conditions. The
parachutes were reefed at the skirt for several skirt diameters, and the
drag was then determined for each diameter.

Lift and drag were measured by the regular wind-tunnel balance system.
The drag data have been corrected for the drag of the supports. No cor-
rections have been applied to the data for blockage or the effects of the
tunnel walls because these corrections are estimated to be less than

1 percent.

RESULTS AND DISCUSSION

Glide Performance

The aerodynamic characteristics of various single canopy configurations
are shown in figure 5 by presenting Cy, Cp, and L/D as functions of con-
trol line setting. Results are shown for various forward velocities, canopy
sizes, and suspension line lengths. If not indicated, the parachutes were
flown in a vertical plane. Three of the configurations were flown both
vertically and horizontally to evaluate the test technique. Figures 5(a),
(b),and (c) indicate some differences in the L/D depending on whether the



parachute was flown in a horizontal or vertical plane. However, these
differences are within the repeatabkility of the data on a given parachute as
shown in figures 5(b) and (c).

It is apparent from the results of figure 5 that of the single canopy
configurations investigated, the rectangular canopies (configurations 9 to 11)
achieved the highest values of L/D. The maximum value was about 2.1. The
maximum L/D achieved by all of the configurations investigated was limited
by collapse of the. canopy leading edge. To delay or prevent this collapse
the effects of modifications to the shape of the canopy leading edge and the
effects of leading-edge support devices (see figs. 2(a) and 2(e)) on the
aerodynamic characteristics of the basic single circular canopy (configura-
tion 4) were investigated. The results are shown in figures 6 and 7. It can
be inferred from these results that reshaping the leading edge or employing
stiffening devices generally delayed collapse of the leading edge of the
canopy. The inflated torus was the most effective device; it increased the
L/D from about 1.1 to about 1.9 and, hence, appears to be a promising method
of inecreasing the L/D capability of gliding parachutes.

Data from clusters of three parachutes and single canopy shapes resem-
bling clusters (fig. 2(f)) are presented in figures 8 and 9. The three-lobe
canopy (configuration 7) achieved a maximum L/D of 2.1.

Although the maximum L/D capability of the parachutes could be
increased by varying canopy shape or adding leading-edge support devices
(figs. 5 through 9), it was not possible to achieve zero L/D correspond-
ing to a vertical descent. At control settings intended to produce low L/D,
the parachutes oscillated violently in pitch and yaw. Analysis of the data
in reference 2 indicated that parachute oscillations are primarily due to a
static instability resulting from insufficient canopy porosity. The porosity
of the sailcloth was essentially zero and there was very little geometric
porosity.

Effect of Geometric Porosity

The geometric porosity of the three-lobe canopy (fig. 2(f)) was varied
by increasing the vent opening on each lobe. The parachute with a porosity
of 6 percent achieved a minimum L/D of 0.3. At low L/D the parachute
was operating near or in the wake of the support strut; hence its stability
could be affected by this wake. Maximum L/D and the corresponding resultant
force coefficient decreased with increasing porosity (figs. 10 and 11).
Similar porosity studies were not performed on the other configurations
investigated. However, these results are considered to be generally appli-
cable for gliding parachutes employing sailcloth which is essentially
nonporous. ’
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Drag in Reefed Configuration

In addition to glide performance, the drag of parachutes 5 and 7 with
the skirt reefed to various diameters was determined. The effect of reefed
diameter on parachute drag is shown in figure 12. With the parachutes reefed
at the diameters investigated (up to 60 percent Do for configuration 5) the
parachute oscillations were reasonably small and the parachute did not produce
a significant amount of 1ift.

CONCLUDING REMARKS

Maximum L/D was limited by collapse of the canopy leading edge and
minimum L/D was limited by the uncontrollable oscillation of the canopye.
When the canopy leading edge was supported with an inflatable torus, the
collapse was delayed and maximum L/D achieved was about 1.9. This was
nearly double the value without the torus. The glide capability of the
parachutes investigated was affected by canopy configuration. Three-lobe
and rectangular shaped canopies attained the highest L/D, about 2.1. Gen-
erally, the canopies investigated had essentially zero porosity which is
necessary for high maximum L/D. The use of centrally located geometric
porosity reduced the maximum L/D but greatly increased the range of L/D
which was not accompanied by oscillation of the canopy.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 31, 1967
124-07-03-07-00-21.
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(a) Configuration 1.

Figure 1l.- The parachutes mounted in the tunnel.




(b) Configuration 2.

Figure 1.- Continued.




(¢) Configuration 3.

Figure 1l.- Continued.




(d) Configuration 5.

Figure 1.- Continued.
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(e) Configuration 6.

Figure 1l.- Continued.
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(f) Configuration 7.

Figure 1.- Continued.
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(g) Configuration 9.

Pigure 1l.- Continued.
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(n) Configuration 10.

Figure 1.- Continued.
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(i) Configuration

Figure 1l.- Concluded.
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Figure 2.- Geometry of the parachutes.



Same basic canopy as configuration | except for the

addition of the louvers, as shown, and the absence
of flaps

Suspension lines to these
gores used for control
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(b) Configuration 3.

Figure 2.- Continued.
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Line no

Same basic shape as

configuration 2 with
the addition of the

center lines

. Length
Line no _Do_
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Line location
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plus line 29
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These lines grouped together |Flcp lines Il through 14 one link
for A/, control Flap lines 17 through 20 one link
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(e¢) Configuration 5.

Figure 2.- Continued.
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Reference area 955 12

inflated span 15 4
inflated maximum chord 4.5 ft

Control line attachment points

Leading edge

Front view

(g) Configuration 9.

Figure 2.- Continued.
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Control line attachment points
|

Reference area 1698 ft2
Inflated span 20 ft
Inflated maximum chord 6 ft

. 0 2040
Front view Ll 1]

Scale, inches

(h) Configuration 10.

Figure 2.- Continued.
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Reference area 328 ft2
Inflated span 24 ft
Inflated maximum chord 9 ft

Control line attachment
points

Rib
x O J
0O 40 80
Front view I I |

Scale, inches
(1) Configuration 11.

Figure 2.- Concluded.
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(a) Horizontal flight.
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(b) Vertical flight.

Figure U4.- The two methods of mounting the parachutes in the wind tunnel.
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(a) Configuration 8. (b) Configuration T.

Figure 9.- Aerodynamic characteristics of shaped parachutes, h/Do = 1.
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Figure 10.- Effect of porosity; configuration T, V = LO fps, 5 = 0.
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